1. Пояснительная записка

Образовательная программа по физике составлена в соответствии с Федеральным государственным образовательным стандартом: «Физика» 7-9 классы (базовый уровень) и примерных программ по учебным предметам. Физика. 7 – 9 классы: проект. – М.: Просвещение, 2011. – 48 с. – (Стандарты второго поколения). , на основе рабочих программ по физике. 7 – 11 классы / Под ред. М.Л. Корневич. – М.: ИЛЕКСА, 2012. , на основе авторских программ (авторов А.В.Перышкина, Е.М. Гутник, Г.Я. Мякишева, Б.Б. Буховцева, Н.Н. Сотского) с учетом требований Государственного образовательного стандарта второго поколения.

Программа соответствует образовательному минимуму содержания основных образовательных программ и требованиям к уровню подготовки учащихся, позволяет работать без перегрузок в классе с детьми разного уровня обучения и интереса к физике. Она позволяет сформировать у учащихся основной школы достаточно широкое представление о физической картине мира.

Программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса с учетом межпредметных связей, возрастных особенностей учащихся, определяет минимальный набор опытов, демонстрируемых учителем в классе и лабораторных, выполняемых учащимися.

Общая характеристика учебного предмета

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения.

Гуманитарное значение физики как составной части общего образования состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

При составлении данной рабочей программы учтены рекомендации Министерства образования об усилении практической, экспериментальной направленности преподавания физики и включена внеурочная деятельность.

Физика в основной школе изучается на уровне рассмотрения явлений природы, знакомства с основными законами физики и применением этих законов в технике и повседневной жизни.

Изучение физики в основной школе направлено на достижение следующих целей:

- развитие интересов и способностей учащихся на основе передачи им знаний и опыта познавательной и творческой деятельности;
- понимание учащимися смысла основных научных понятий и законов физики, взаимосвязи между ними;
- формирование у учащихся представлений о физической картине мира.

Достижение этих целей обеспечивается решением следующих задач:

- знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;
- приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлений, физических величинах, характеризующих эти явления;
- формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;
- овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, теоретический вывод, результат экспериментальной проверки;
- понимание учащимися отличий научных данных от непроверенной информации, ценности науки удовлетворения бытовых, производных и культурных потребностей человека

Учебная программа 7 класса рассчитана на **68 часов**, по **2 часа** в неделю Учебная программа 8 класса рассчитана на **68 часов**, по **2 часа** в неделю Учебная программа 9 класса рассчитана на **102 часа**, по **3 часа** в неделю

Курс завершается итоговым тестом, составленным согласно требованиям уровню подготовки выпускников основной школы.

<u>Основное содержание программы</u> <u>7 класс</u>

Физика и физические методы изучения природы

<u>Физика</u> — наука о природе. Наблюдение и описание физических явлений. Физический эксперимент. *Моделирование явлений и объектов природы*. Измерение физических величин. Международная система единиц. Физические законы и границы их применимости. Роль физики в формировании научной картины мира. Научный метод познания. Наука и техника *Демонстрации*

- свободное падение тел
- колебания маятника
- притяжение стального шара магнитом
- свечение нити электрической лампы
- электрические искры

<u>Эксперименты</u>

- измерение расстояний
- определение цены деления шкалы измерительного прибора

Внеурочная деятельность

- внесистемные величины (проект)
- измерение времени между ударами пульса

Строение и свойства вещества

Строение вещества. Опыты, доказывающие атомное строение вещества. Тепловое движение и взаимодействие частиц вещества. Агрегатные состояния вещества.

<u>Демонстрации</u>

- диффузия в растворах и газах, в воде
- модель хаотического движения молекул в газе
- демонстрация расширения твердого тела при нагревании

Эксперименты

- измерение размеров малых тел

Внеурочная деятельность

- в домашних условиях опыт по определению размеров молекул масла
- вместе с одноклассником проделать опыт: взять часы с секундной стрелкой, кусок шпагата, линейку, флакон духов и встать в разные углы класса. Пусть ваш товарищ заметит время и откроет флакон, а вы отметите время, когда почувствуете запах. Объяснить данное явление, измерив, расстояние.
 - выращивание кристаллов соли или сахара (проект)

Механические явления

Механическое движение. Относительность движения. Траектория. Путь. Равномерное движение. Скорость. Средняя скорость.

Демонстрации

- равномерное прямолинейное движение
- зависимость траектории движения тела от выбора системы отсчета

Внеурочная деятельность

- определение средней длины шага и определение средней скорости движения в школу. Сравнение собственного пути и перемещения за сутки. Сравнение результатов между одноклассниками

Динамика

Инерция. Инертность тел. Взаимодействие тел. Масса – скалярная величина. Плотность вещества. Сила – векторная величина. Движение и силы. Сила тяжести. Сила упругости. Сила трения. Давление. Атмосферное давление. Закон Паскаля. Закон Архимеда. Условия плавания тел. Условия равновесия твердого тела.

<u>Демонстрации</u>

- явление инерции
- сравнение масс тел с помощью равноплечих весов
- измерение силы по деформации пружины
- свойства силы трения
- сложение сил
- барометр
- опыт с шаром Паскаля
- опыт с ведерком Архимеда

<u>Эксперименты</u>

- измерение массы тела
- измерение плотности твердого тела
- измерение плотности жидкости
- исследование зависимости удлинения стальной пружины от приложенной силы
- исследование условий равновесия рычага
- измерение Архимедовой силы

Внеурочная деятельность

- наблюдение инертности монеты на листе бумаги
- определение массы воздуха в классе и дома, сравнение
- домашнее наблюдение невесомости
- анализ (критическая оценка) газетных публикаций с физическим содержанием: Петрова Н. Какие бывают весы// Юг , Note 10 (95), 13-19 марта , 2002 г.
- домашний опыт с катушкой ниток и написание сочинений о роли силы трения в жизни быту спорте и т.п (мини проект)

- определить во сколько раз давление табурета на пол больше ножками, чем сидением и давление сидящего ученика каждого класса на стул, сравнение
- получение мыльных пузырей и объяснение, почему они имеют шарообразную форму
- дома на боковой стороне высокой банки из -под кофе пробить гвоздем отверстия на высотах 3 6 и 9 см. поместите банку в раковину под кран и откройте так чтобы объем поступающей воды и вытекающей были одинаковы проследите за струйками объясните.
- изготовление фонтана
- зажженную свечку или бумагу внутри стакана подержи вверх дном, затем быстро поставить стакан вверх дном на воздушный шарик. Опишите наблюдаемое явление
 - сконструировать и изготовить дозатор жидкости
- сконструировать автоматическую поилку для кур
- определение плотности собственного тела
- написание инструкций к физическому оборудованию (бытовые весы, динамометр)

Механическая энергия

Энергия. Кинетическая энергия. Потенциальная энергия. Закон сохранения механической энергии. Простые механизмы. Коэффициент полезного действия.

<u>Демонстрации</u>

- реактивное движение модели ракеты
- простые механизмы

Эксперименты

- измерение КПД наклонной плоскости

Внеурочная деятельность

- конструирование рычажных весов с использованием монет (мини проект)
- измерение мощности учеников класса при подъеме портфеля и ее сравнение(мини проект)
- измерение с помощью мм линейки плеча рычагов ножниц и ключа дверного замка и определить выигрыша в силе .

Возможные экскурсии: цехи заводов, ферма, строительные площадки. Мельница, пожарная станция, диагностические кабинеты поликлиники или больницы.

Подготовка биографических справок: Г.Галилей, И.Ньютон, Р.Гук, Б. Паскаль, э, Торичелли, Архимед

Подготовка сообщений по заданной теме:

Броуновское движение, Роль явления диффузии в жизни растений и животных, Три состояния воды в природе, Закон всемирного тяготения, Сила тяжести на других планетах, Пассажирские лайнеры, Танкеры и сухогрузы, Промысловые суда, Военные корабли, Подводные лодки, Ледоколы, Суда на воздушной подушке и подводных крыльях

<u>Возможные исследовательские проекты</u>: Роль силы трения в моей жизни, сила трения и велосипед, сила трения на кухне, Использование дирижаблей во время 1 и 2 Мировой войны и в наши дни., перспектива использования или обреченность (изготовление модели дирижабля), изготовление автоматической поилки для скота, проект - изготовление фонтана для школы

<u>Основное содержание программы</u> <u>8 класс</u>

Тепловые явления

Тепловое равновесие. Температура. Внутренняя энергия. Работа и теплопередача. Вид теплопередачи. Количество теплоты. Испарение и конденсация. Кипение. Влажность воздуха. Плавление и кристаллизация. Закон сохранения энергии в тепловых процессах.

Преобразование энергии в тепловых машинах. КПД тепловой машины. Экологические проблемы теплоэнергетики.

Демонстрации

- принцип действия термометра
- теплопроводность различных материалов
- конвекция в жидкостях и газах.
- теплопередача путем излучения.
- явление испарения.
- постоянство температуры кипения жидкости при постоянном давлении.
- понижение температуры кипения жидкости при понижении давления.
- наблюдение конденсации паров воды на стакане со льдом.

<u>Эксперименты</u>

- исследование изменения со временем температуры остывания воды.
- изучение явления теплообмена при смешивании холодной и горячей воды.
- измерение влажности воздуха.

Внеурочная деятельность

- объяснить, что такое инфра, экзотермический, сублимация, аморфный, изотропия, дисстилят. Перпетуум мобиле?
- исследование изменения температуры воды, если в ней растворить соль.

- исследование теплопроводности алюминиевой железной и латунной кастрюли одинаковых размеров с одинаковым количеством воды на одинаковом огне за одно время. Выяснить какая кастрюля обладает большей теплопроводностью.
- исследование и объяснение вращения и ускорения вращения бумажной змейки над включенной эл. лампой. Объяснение данного явления.
- исследование двух кусочков льда обернутых в белую и черную ткань под действием включенной эл. лампочки.
- построение классификационной схемы, выделяя основанием деления способы изменения внутренней энергии (мех. работа, хим. реакции, взаимодействие вещества с электромагнитным полем, теплопередача, теплопроводность, конвекция, излучение.
- исследовать термос и сделать чертеж, показывающий его устройство. Налить в термос горячей воды и найти ее температуру. Определить какое количество теплоты теряет термос в час. Повторить то же с холодной водой и определить
- какое количество теплоты термос приобретает в час. Сравнить и почему термос сохраняет вещество холодным лучше, чем теплым?
- сделать наглядный прибор по обнаружению конвекционных потоков жидкости.
- экспериментальным путем проверить какая вода быстрее замерзнет, горячая или холодная? Построить график зависимости температуры от времени, измеряя через одинаковые промежутки времени температуру воды, пока на поверхности одной из них не появится лед.
- изготовление парафиновой игрушки, с использованием свечи и пластилина.

Электрические явления

Электризация тел. Электрический заряд. Два вида электрических зарядов. Закон сохранения электрического заряда. Электрическое поле.

Постоянный электрический ток. Сила тока. Электрическое сопротивление. Электрическое напряжение. Проводники, диэлектрики и полупроводники. Закон Ома для участка электрической цепи. Работа и мощность электрического тока. Закон Джоуля – Ленца. Правила безопасности при работе с источниками электрического тока.

Демонстрации

- электризация тел
- два рода электрических зарядов
- устройство и действие электроскопа
- закон сохранения электрических зарядов
- проводники и изоляторы

- источники постоянного тока
- измерение силы тока амперметром
- измерение напряжения вольтметром
- реостат и магазин сопротивлений
- свойства полупроводников

<u>Эксперименты</u>

- объяснить, что это? (нуклон, аккумулятор, диэлектрик, потенциал, манганин).
- исследование зависимости силы тока в проводнике от напряжения
- изучение последовательного соединения проводников
- изучение параллельного соединения проводников
- регулирование силы тока реостатом
- измерение электрического сопротивления проводника
- измерение мощности электрического тока

Внеурочная деятельность

- изготовление простейшего электроскопа (Бутылка с пробкой, гвоздь длиной 10-15 см, тонкая бумага. В пробку вбить гвоздь так, чтобы он торчал из нее на 2-3 см. Шляпка гвоздя будет «шариком» электроскопа. Полоску тонкой бумаги наколоть на заостренный кончик гвоздя, это лепестки электроскопа.
- измерение КПД кипятильника
- изготовление из картофелины или яблока источника тока (взять любое это вещество и воткнуть в него медную и цинковую пластинку). Подсоединить к этим пластинкам 1,5 В лампочку.
- найти дома приборы, в которых можно наблюдать тепловое. Химическое и электромагнитное действие эл. тока. Описать их.
- изготовление электромагнита (намотать на гвоздь немного проволоки и подключить эту проволоку к батарейке, проверить действие на мелких железных предметах)
- сравнить амперметр и вольтметр, используя знания, полученные из учебника и инструкции к приборам, работу оформить в виде таблицы.
- работа с инструкцией к сетевому фильтру, заполняя таблицу по вопросам.
- заполнить таблицу по инструкциям домашних электроприборов.

Магнитные явления

Постоянные магниты. Взаимодействие магнитов. Магнитное поле постоянного тока. Действие магнитного поля на проводник с током.

Электродвигатель постоянного тока.

<u>Демонстрации</u>

- опыт Эрстеда.
- магнитное поле тока.
- действие магнитного поля на проводник с током.
- устройство электродвигателя.

Лабораторная работа

• изучение принципа действия электродвигателя.

Внеурочная деятельность

- что такое дроссель, соленоид, ротор, статор,
- изучение магнитного поля полосового магнита, дугового магнита и катушки с током, рисунки магнитного поля.
- изучение свойств постоянных магнитов (магнит, компас и разные вещества: резина, проволока, гвозди, деревян. бруски и т.п.)

Световые явления

Свет – электромагнитная волна. Прямолинейное распространение света. Отражение и преломление света. Плоское зеркало. Линзы. Фокусное расстояние и оптическая сила линзы. Оптические приборы. Дисперсия света

Демонстрации

- прямолинейное распространение света
- отражение света
- преломление света
- ход лучей в собирающей линзе
- ход лучей в рассеивающей линзе
- построение изображений с помощью линз
- принцип действия проекционного аппарата и фотоаппарата.
- дисперсия белого света
- получение белого света при сложении света разных цветов

Лабораторные работы

- измерение фокусного расстояния собирающей линзы.
- получение изображений с помощью собирающей линзы.

Внеурочная деятельность

- обнаружение тени и полутени
- исследование: взять метровую палку и на улице измерить размер ее тени, затем определить реальную высоту деревьев, домов, столбов, измеряя их тени. Полученные данные оформить в виде таблицы.
- используя различные источники сделать в виде наглядных карточек оптические иллюзии
- выяснить, что это? (диапозитив, камера обскура, монокуляр, дуализм, квант, рефракция, диоптрия)

Возможные экскурсии: ферма, строительные площадки, мельница, пожарная станция, диагностические кабинеты поликлиники или больницы.

<u>Подготовка сообщений по заданной теме:</u> Единицы температуры, используемые в других странах. Температурные шкалы. Учет и использование разных видов теплопередачи в быту. Дизельный двигатель, свеча Яблочкова, лампа накаливания А.Н. Лодыгина, лампа с угольной нитью Эдисона. Влияние солнечной активности на живую и неживую природу. Полярные сияния. Магнитное поле планет Солнечной системы. Полиморфизм.

Роберт Вуд – выдающийся ученый, человек и экспериментатор. Сергей Иванович Вавилов и его вклад в историю развития учения о свете.

<u>Возможные исследовательские проекты</u>: Принцип симметрии Пьера Кюри и его роль в кристаллографии. Исследование процесса кипения и замерзания пресной и соленой воды. Исследование процесса плавления гипосульфита. Экологические проблемы « глобального потепления». Экспериментальное исследование полного отражения света. Физика в человеческом теле. Групповой проект «Физика в загадках».

Содержание курса физики в 9 классе (102 часа)

Законы взаимодействия и движения тел (34 часа)

Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение. Мгновенная скорость. Ускорение, перемещение.

Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении.

Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета.

Первый, второй и третий законы Ньютона.

Свободное падение. Невесомость. Закон всемирного тяготения. Искусственные спутники Земли. Импульс. Закон сохранения импульса.

Реактивное движение.

Демонстрации.

Относительность движения. Равноускоренное движение. Свободное падение тел в трубке Ньютона. Направление скорости при равномерном движении по окружности. Второй закон Ньютона. Третий закон Ньютона. Невесомость. Закон сохранения импульса. Реактивное движение.

Лабораторные работы.

- 1. Исследование равноускоренного движения без начальной скорости.
- 2. Измерение ускорения свободного падения.

Механические колебания и волны. Звук. (16 часов)

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. (Гармонические колебания).

Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс.

Распространение колебаний в упругих средах. Продольные и поперечные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой).

Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс.

Демонстрации.

Механические колебания. Механические волны. Звуковые колебания. Условия распространения звука.

Лабораторная работа.

3. Исследование зависимости периода и частоты свободных колебаний нитяного маятника от длины нити.

Электромагнитное поле (26 часов)

Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика.

Обнаружение магнитного поля. Правило левой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции.

Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние.

Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы.

Конденсатор. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения.

Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Типы оптических спектров. Поглощение и испускание света атомами. Происхождение линейчатых спектров.

Демонстрации.

Устройство конденсатора. Энергия заряженного конденсатора. Электромагнитные колебания. Свойства электромагнитных волн. Дисперсия света. Получение белого света при сложении света разных цветов.

Лабораторные работы.

4. Изучение явления электромагнитной индукции.

Строение атома и атомного ядра (19 часов)

Радиоактивность как свидетельство сложного строения атомов.

Альфа-, бета-, гамма - излучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Методы наблюдения и регистрации частиц в ядерной физике.

Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правила смещения. Энергия связи частиц в ядре.

Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций.

Дозиметрия. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы.

Термоядерная реакция. Источники энергии Солнца и звезд.

Демонстрации.

Модель опыта Резерфорда. Наблюдение треков в камере Вильсона. Устройство и действие счетчика ионизирующих частиц.

Лабораторные работы.

- 5. Изучение деления ядра атома урана по фотографии треков.
- 6. Изучение треков заряженных частиц по готовым фотографиям.

Обобщение и повторение 6 часов

Требования к уровню подготовки выпускников 9 класса.

В результате изучения физики в 9 классе ученик должен:

знать/понимать

- смысл понятий: физическое явление, физический закон, взаимодействие, электрическое поле, магнитное поле, волна, атом, атомное ядро, ионизирующие излучения;
- смысл физических величин: путь, скорость, ускорение, масса, сила, импульс, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия;
- смысл физических законов: Ньютона, всемирного тяготения, сохранения импульса и механической энергии.

уметь

- описывать и объяснять физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, механические колебания и волны, электромагнитную индукцию;
- использовать физические приборы и измерительные инструменты для измерения физических величин: расстояния, промежутка времени, силы;
- представлять результаты измерений с помощью таблиц, графиков, и выявлять на этой основе эмпирические зависимости: пути от времени, силы упругости от удлинения пружины, силы трения от силы нормального давления, периода колебаний маятника от длины нити, периода колебаний груза на пружине от массы груза и жесткости пружины;
- выражать результаты измерений и расчетов в единицах Международной системы (Си);
- приводить примеры практического использования физических знаний о механических, электромагнитных и квантовых явлениях;
- решать задачи на применение изученных физических законов;
- осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), ее обработку и представление в различных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем);
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни: для обеспечения безопасности в процессе использования транспортных средств, рационального применения простых механизмов; оценки безопасности радиационного фона.

Результаты освоения курса физики

Личностные результаты:

- сформирование познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметные результаты:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения поставленных задач;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных релей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

Предметные результаты:

- знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов. Раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Личностные результаты:

- формирование познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки, отношение к физике как к элементу общечеловеческой культуры;
- самостоятельность в приобретении новых знаний и практических умений;
- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- формирование ценностных отношений к друг другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметные результаты:

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез; разработки теоретических моделей процессов или явлений;
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников и новых информационных технологий для решения поставленных задач;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
- освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию

Предметные результаты:

- знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими явлениями, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, рационального природопользования и охраны окружающей среды;
- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, высокой ценности науки в развитии материальной и духовной культуры людей;

- развитие теоретического мышления на основе формирования устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, выводить из экспериментальных фактов и теоретических моделей физические законы;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Тематическое планирование

№	Наименование разделов и тем	Всего часов				
Π/Π						
7 класс						
1	Введение	4				
2	Первоначальные сведения о строении вещества	6				
3	Взаимодействие тел	21				
4	Давление твердых тел, жидкостей и газов	21				
5	Работа. Мощность. Энергия	11				
6	Повторение	5				
	Итого	68				
8 класс						
1	Тепловые явления	23				
2	Электрические явления	26				
3	Электромагнитные явления	5				
4	Световые явления	8				
5	Повторение	6				
	Итого	68				
9 класс						
1	Законы движения и взаимодействия	39				
2	Механические колебания и волны	15				
3	Электромагнитные явления	22				
4	Строение атома и атомного ядра. Использование энергии атомных ядер	19				
5	Повторение	6				
	итого	102				